

CENTRAL ASIAN JOURNAL OF SOCIAL SCIENCES AND HISTORY

Journal homepage: <https://cajssh.centralasianstudies.org>

An Examination of the Risks and Challenges Associated with the Digital Economy: Issues and Prospects

Sarvesh Raj Rocque

Amity University Madhya Pradesh

srrocque@gwa.amity.edu

Abstract:

It is clear that the advancements in digital technology, coupled with the modern economic conditions, are creating opportunities for organizations to be successful in the digital economy by taking advantage of the advancements of digital technology. The advancements in digital technology have also led to the emergence of new forms of digital risks as a result of those very same technological advancements, which have led to the advancement of digital technology. To be able to achieve their ambitions and stay ahead of ever-evolving cyber threats as well as threat actors while pursuing their goals, enterprises need to manage their digital risks effectively if they want to achieve their ambitions and stick ahead of ever-evolving cyber threats. Because of this, digital risk management has become one of the most important aspects of risk management in the 21st century, making it one of the most important aspects of risk management. A company needs to understand and manage digital risks in order to protect its assets and data from cyber-attacks, navigate their digital transformations with confidence, and improve their business decisions, in order to ensure the safety and security of their assets and data. This will allow them to safeguard their assets and data from cyber-attacks while also ensuring the safety of their assets and data.

ARTICLE INFO

Article history:

Received 18-Jan-23

Received in revised form 15-Jan-23

Accepted 16-Feb-23

Available online 24-Mar-2023

Key word: Digital economy, digital economy risks, digital economy challenges, prospects of digital economy, issues in digital economy.

INTRODUCTION.

Governments are under an urgent obligation to respond to the COVID-19 pandemic as soon as possible and the process of digital transformation has accelerated as a result of the pandemic. In order to organize and harness the surge in digital data for the benefit of the global good, there is a major

challenge that needs to be addressed in order to accomplish this. It is becoming increasingly apparent that data has become one of the most important strategic assets that can be leveraged in order to create both private and social value in today's economy. By handling these data in a way that is consistent with the Sustainable Development Goals, there will be a profound impact on our ability to meet the Sustainable Development Goals. It is going to be difficult for us to determine what is the best way forward, but it is something that we have to do if we wish to proceed. In a multidimensional manner, data can have a significant impact on not only trade and economic development, but also human rights, peace, and security in our world, depending on how they are used. Data are multifaceted in their nature, and how they are used can have profound effects. Also, there are certain measures that need to be taken in order to mitigate the risks of abuse and misuse of data by states, non-state actors, or the private sector, so that these risks can be mitigated. A number of new technologies are now being implemented into the market such as robotic automation, artificial intelligence, IoT, and big data that can cause unplanned and usually undesirable outcomes as a result of the implementation of these technologies.

Despite the fact that it is difficult to quantify security incidents, it is important to do so. As security incidents become more sophisticated, more frequent, and more impactful, there has seemed to be an increase in their sophistication, frequency, and magnitude. The reputation of an organization can suffer irreparable damage as a result of security incidents that occur within their environment. The loss of financial resources, as well as physical assets, can undermine a company's competitiveness, limit its ability to innovate, and undermine the company's market position. It is true that individuals can suffer tangible physical and economic harms that can be attributed to them, as well as intangible harms such as damage to their reputation or intrusion into their private lives that can be attributed to them. As well as the potential for security incidents to cause significant costs for the economy as a whole, there is also the possibility that they will contribute to eroding trust, both within and across sectors, in as much as they will affect the affected organizations.

There is no such thing as a static digital world, and as time passes, it continues to undergo very rapid changes as it continues to evolve and advance. As a result of the widespread changes that have occurred in the digital world of today, the scale and nature of the challenges associated with digital security and privacy have significantly increased, which indicates that there needs to be a change in how these risks are managed as a result of these changes. A successful management of digital security and privacy risks is essential if countries want to take advantage of the benefits of the digital economy in terms of economic and social growth if they wish to benefit fully from its advantages. If we establish a degree of trust with our customers and users, there is a possibility that they will accept and use digital services more widely if we establish higher levels of trust with them. In order for governments to play a crucial role in promoting the conditions that will lead to the creation of trust as well as complementing the initiatives of the private sector, they need to play a key role. There is a need for organizations to be more aware of the data they collect and hold. A company needs to be proactive in considering when and why they are collecting personal or sensitive data, and make sure that they are confident that the collection of that information is actually necessary in the first place. Also, organizations should take proactive measures to determine how long a data needs to be retained in order to ensure that they are not retaining data for an unnecessarily long period of time. There should be systems in place to ensure that any data that is no longer needed to be kept is disposed of, or at the very least deidentified, as soon as possible.

In an effort to avoid mishaps that have the potential to occur in the future, the author emphasizes that corporations must pay special attention to the risks associated with the digital economy during the

transformation process. In order to identify which risks are most significant, this study is meant to identify which risks are most significant in order to identify which risks are most significant. A hierarchical classification approach was used for developing a priori classifications and rankings, as well as an a priori analysis of the data in order to develop a priori classifications and rankings. The result of the priori analysis of the traditional economy has revealed that the highest priority of research in the priori analysis of the traditional economy is given to the financial and commercial types of risks, based on the priori analysis of the traditional economy. Various types of risks are associated with the digital economy and have been classified in this article according to their nature. In addition to this, according to the article, there is a particular type of corporate risk associated with the digital economy called a technological risk, which is a very specific risk that is associated with the digital economy. There is a suggestion that technological risk should be taken into account when understanding the problems associated with the development and implementation of information and communication technologies on a large scale, as well as the large-scale acceleration of the digital economy. This seems to be the case because these technologies are prone to self-propagation and interactive innovation, so it seems that they are almost impossible to stop due to their tendency toward self-propagation and interactive innovation. A positive trend has been observed in the emergence of a new financial system which is built upon the use of digital platforms, technology, and marketing, and which is characterized by a strong emphasis on innovation.

METHODOLOGY.

We interviewed and surveyed 250 people from a cross-section of various work forces for this study. In order to examine how scientists understand their own explanations and motivations for changing their practices in light of these changes, the author conducted a series of surveys. A series of surveys were conducted by the author to gain an understanding of how people interpret the changes in their practices that result from our findings. It was requested that participants complete a survey in order to assess their attitudes towards digital economy, as well as their expectations regarding issues and prospects which may affect them prior and post to implementation, as well as their understanding of its effects. In order to determine whether previous expectations had been met, a survey was conducted following the implementation process. In order to form an opinion, they were compared with those that had developed after the start of the implementation.

Digital Economy as a concept has had a significant impact on digital technology and has played a significant role in many different fields. Using a five-point Likert scale, respondents were asked to rate the questionnaire from 5 points (strongly agree) to 1 point (strongly disagree). In accordance with the scale above, respondents were asked to indicate their level of agreement with this statement. We calculated the validity of the measurement questions using Cronbach's alpha as a tool for determining validity. As calculated by SPSS for the reliability statistics, the Cronbach's alpha of the 20 items in the questionnaire "An Examination of the Risks and Challenges Associated with the Digital Economy: Issues and Prospects" is 0.723. This result indicates that the data is reliable and suitable for further analysis. As you can see, the value is well above the minimum value of 0.6.

Table 1 - Reliability Statistics

Cronbach's Alpha	N of Items
.723	20

Data Collection

Primary data: Based on a questionnaire consisting of 20 questions asked by the participants closely related to the areas of digital economy, issues and prospects, the following primary data were collected from the selected samples.

RESULTS AND DISCUSSIONS.

In order to implement a proper digital risk management process, the first step is to identify as much information as possible about all critical assets and sensitive data, as well as how these assets and data may be compromised by threat actors in the future. I find this point to be very important because it is essential that we keep in mind that these assets are not only people, but also systems such as portals, databases, websites, as well as applications such as ERP and CRM platforms, and other software and applications as well. Having identified a company's critical assets will allow it to develop a robust risk mitigation strategy and identify potential areas of risk exposure once the assets have been identified in order to build a robust risk mitigation strategy. A risk mitigation strategy can be developed once an organization has identified these assets and has constructed a plan to mitigate those risks. As a corporation or business, if you are going to be successful in the modern business environment, you must develop a concerted, well-thought-out strategy about digital transformation, rather than using different tools and methods on a haphazard basis rather than using a well-planned strategy. In addition, the author argues that there is also evidence pointing to contradictions in the strategies and influence of the major transnational corporations, which have turned into one of the main sources of risk in transnational corporations in recent decades. From the standpoint of ensuring national security issues within the context of a digital economy, we are confronted with new challenges in the new environment of the digital economy.

Organizations are often required by law to collect and retain data in order to comply with their legal obligations, but they are also required to ensure that the data that they collect and retain at all times is kept securely in order to comply with their legal obligations. In spite of the fact that many companies still see privacy as a strictly legal responsibility, they fail to see that it entails economic and social risks, as well as a strategic issue that has the potential to give them a competitive edge in the marketplace. As soon as an organization decides how to treat privacy risks in order to achieve its goals, it is important to consider the societal and economic objectives that it is trying to achieve when making a decision on how to deal with privacy risks. There is no doubt that privacy risks are important to be considered, but it is important to remember that these risks, like all types of risks, should not be assessed in isolation, but rather in the context of their potential benefits. An organization's economic risk management framework can be strengthened as a result of addressing privacy risks as part of its broader economic risk management plan. There may be several benefits that can be realized by including them in economic and social decision-making, if they are included in these processes. In order to ensure that an organization is not only complying with its regulatory obligations, but also ensuring that its data is protected, one of the most effective ways is to conduct a data risk assessment and set up a data governance framework. In addition, the company is also well positioned to respond should there be an unfortunate incident of a cyber-attack or data breach that occurs as well.

Despite possible connections between the study of digital economies and the sociology of risk, it has been observed that, with few exceptions, the study of digital economies and the sociology of risk have borne little or no relationship. They have a benign relationship of mutual neglect between them, despite the fact that there may be significant connections between them. To bridge the gap between

these two fields, Beck's theory of risk society will be used in order to bridge the gap between both. It is planned in this article to explore how the digital economy's momentum of innovation is creating risks and limiting the scope of existing democratic decision-making through the use of the power that is provided by the digital economy. It is the objective of this ideology to create social faits accomplis that are beyond democratic control, as well as to limit the scope of democratic decision-making already in place.

CONCLUSION.

As is well known, a significant part of the Fourth Industrial Revolution is the development and application of new technologies within the framework of the Fourth Industrial Revolution, which is characterized by the development and application of new technologies. A new era of technology, whose core element is information technology, has developed and been applied within the framework of the Fourth Industrial Revolution, in which the development and application of new technologies played a prominent role. Throughout this paper, we have focused on the identification, assessment, and mitigation of the threats and risks associated with the development and application of new technologies in a multifaceted manner as a means of mitigating the risks and threats.

The broad range of modern technologies as well as the different types of modern technologies contribute to a wide range of positive and negative effects on society, it is important to keep in mind this. These risks are not only technical, but will also have an impact on the environment, the economy, and the society in general as well. Information is inherently uncertain due to its fundamental properties. An inherent part of the processes involved in the establishment of a new technological order in a great deal of ways, whereby there is a definable level of risk, is the presence of a definable degree of risk that is inherent to the processes involved. Based on the application of scientometric and multidimensional data analysis methods in the analysis of new technological directions in the area of information technology, it has been concluded that a systematic analysis of new technological directions needs to be conducted. According to the analysis, the development of new technological directions will be based on a systematic approach. It is evident that these directions may pose the most dangerous risks to society and the economy, which are often unknown even to the professional community members who are involved in these matters, and which are often the ones who are most affected by these changes.

LIST OF REFERENCES.

1. Baisya, R. K., & Tiwari, S. P. (2008). E-governance Challenges and Strategies for Better-managed Projects. *Emerging Technologies in E-Government*, 203-208.
2. Beachley, Norman H., and A. A. Frank. *Increased Fuel Economy in Transportation Systems by Use of Energy Management: Digital automotive propulsion simulator programs and description*. Vol. 75. No. 2. University of Wisconsin, Engineering Experiment Station, 1974.
3. Byrne, Thomas, et al. "Positioning the subscriber loop network for digital services." *IEEE Transactions on Communications* 30.9 (1982): 2006-2011.
4. Ginzberg, Michael J., and Edward A. Stohr. "Decision support systems: issues and perspectives." (1982).

5. Irving, M. R., and M. J. H. Sterling. "Economic dispatch of active power with constraint relaxation." *IEE Proceedings C (Generation, Transmission and Distribution)*. Vol. 130. No. 4. IET Digital Library, 1983.
6. Jager, F. de, and Cornelis Dekker. "Tamed frequency modulation, a novel method to achieve spectrum economy in digital transmission." *IEEE Transactions on Communications* 26.5 (1978): 534-542.
7. Kauffman, Robert J., and Peter Weill. "An evaluative framework for research on the performance effects of information technology investment." (1989).
8. Lucas Jr, Henry C., and Jon A. Turner. "A corporate strategy for the control of information processing." (1981).
9. Mahmoud, M. "Experience results and techno-economic feasibility of using photovoltaic generators instead of diesel motors for water pumping from rural desert wells in Jordan." *IEE Proceedings C (Generation, Transmission and Distribution)*. Vol. 137. No. 6. IET Digital Library, 1990.
10. Magnuson Jr, W. G., and C. W. Gwyn. *European Economic Communities symposium on computer-aided design of digital electronic circuits and systems.[Brussels, Nov. 27--29, 1978]*. No. UCID-18154. California Univ., Livermore (USA). Lawrence Livermore Lab., 1978.
11. Moore, Gordon E. "Progress in digital integrated electronics." *Electron devices meeting*. Vol. 21. 1975.
12. Mosley, Paul. *The settler economies: studies in the economic history of Kenya and Southern Rhodesia 1900-1963*. Diss. University of Cambridge, 1980.
13. Mueller, Kurth, and Markus Muller. "Timing recovery in digital synchronous data receivers." *IEEE transactions on communications* 24.5 (1976): 516-531.
14. Peled, Abraham, and Bede Liu. "A new hardware realization of digital filters." *IEEE transactions on acoustics, speech, and signal processing* 22.6 (1974): 456-462.
15. Raja, John, and A. Seetharaman. "E-payments: Problems and Prospects." *The Journal of Internet Banking and Commerce* 13.1 (1970): 1-17.
16. Shaw, Gareth, and Allan M. Williams. "Tourism, economic development and the role of entrepreneurial activity." *Tourism, economic development and the role of entrepreneurial activity*. (1990): 67-81.
17. Tiwari, S. P. (2022). Information and communication technology initiatives for knowledge sharing in agriculture. arXiv preprint arXiv:2202.08649.
18. Tiwari, S. P. (2015). Strengthening E-Commerce Product Launches-Improving Efficiencies from Development to Production. Project And Technology Management Foundation (A Non-Profit Organization) Member of Asia Pacific Federation of Project Management, 1(2), 4-6.
19. Tiwari, S. P. (2022). Organizational Competitiveness and Digital Governance Challenges. Archives of Business Research, 10(3).
20. Tiwari, S. P. (2022). Emerging Technologies: Factors Influencing Knowledge Sharing. World Journal of Educational Research.

21. Tiwari, S. P. (2018). Is export-oriented and currency dynamics-based Indian soybean revolution environment-friendly. *Current Science*, 114(08), 1604-1605.
22. Tiwari, S. P., & Baisya, R. K. (2014). E-governance and its impact on enterprise competitiveness: Trends, Status and Challenges. MDI, Gurgaon INDIA in Association with Australian Centre for Asian Business, University of South Australia, Adelaide, AUSTRALIA, 1.
23. Tiwari, S. P. (2022). Re-emergence of Asia in the New Industrial Era. *Technium Soc. Sci. J.*, 29, 471.
24. Tiwari, S. P. (2022). Knowledge Enhancement and Mobile Technology: Improving Effectiveness and Efficiency. arXiv preprint arXiv:2208.04706.
25. Tiwari, S. P. (2022). Covid-19: Knowledge Development, Exchange, and Emerging Technologies. *International Journal of Social Science Research and Review*, 5(5), 310-314.
26. Tiwari, S. P. (2022). Knowledge Management Strategies and Emerging Technologies--An Overview Of the Underpinning Concepts. arXiv preprint arXiv:2205.01100.
27. Tiwari, S. P. (2022). Emerging trends in soybean industry. arXiv preprint arXiv:2202.08590.
28. Tiwari, S. P. (2014). Exploring the Linkage between a Successful Digital Campaign and Gaming. *Casual Connect, Asia Pacific*, Singapore, 1(1), 5-6.
29. Tiwari, S. P. (2015). Business: Innovation & Survival, by a Googler.
30. Tiwari, S. P. (2015). Diversity and its importance in today's corporate environment.
31. Tiwari, S. P. (2015). Editorial: Project and Technology Management Foundation (PTMF) Newsletter (June, 2015).
32. Tiwari, S. P. (2014). Editorial: Project and Technology Management Foundation (PTMF) Newsletter (December, 2014).
33. Tiwari, S. P. (2022). The Potential Impact of COVID-19 on the Asian Rural Economy: A Study Based on Asian Countries. *Journal of Education, Management and Development Studies*, 2(3), 1-7.
34. Tiwarim, S. P. (2022). Knowledge Enhancement and Understanding of Diversity. *Technium Soc. Sci. J.*, 30, 159.
35. Tiwari, S. P. (2015). Knowledge Sharing and Content Creator Best Practices Online.
36. Tiwari, S. P. (2016). External factors which shape and influence an organisation's operating environment. In *Syngenta Workshop on Social, economic, political, technological & environmental trends*, Singapore (Vol. 1, pp. 1-5).
37. Tiwari, S. P. (2010). Workshop on Digital Marketing: Credit Course, IIM, Indore.
38. Tiwari, S. P. (2022). The Impact of New Technologies on Society: A Blueprint for the Future. Scholarly Publisher RS Global Sp. z OO.
39. Tiwari, S. P. (2023). Artificial Intelligence and its Imperatives for OD: How to Build an AI-Powered Organization. OD Play Notes a Bi-monthly Newsletter for OD Practitioners.

40. Trajtenberg, Manuel. *Economic analysis of product innovation: The case of CT scanners*. Vol. 160. Harvard University Press, 1990.
41. Williams, John E., and Steven R. Vukelich. *The USAF Stability and Control Digital DATCOM. Volume III. Plot Module*. McDonnell Douglas Astronautics Co St Louis Mo, 1979.
42. Wu, Chuan-Lin, and Tse-Yun Feng. "On a class of multistage interconnection networks." *IEEE transactions on Computers* 100.8 (1980): 694-702.
43. Wu, Yuan-li. *Economic development in Southeast Asia: the Chinese dimension*. Hoover Institution Press, 1980.
44. Young, Robert A., and John D. Bredehoeft. "Digital computer simulation for solving management problems of conjunctive groundwater and surface water systems." *Water resources research* 8.3 (1972): 533-556.